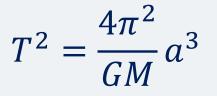


KEPLER'S LAWS ANSWERS



TASK 1: INVESTIGATE KEPLER'S 3RD LAW

- The data points plot in a straight line.
- The line of best fit has an R² value of 1. This tells us there is a strong relationship between the 2 variables.
- The squares of the orbital periods are directly proportional to the cubes of the semi-major axis.

TASK 2: APPLY KEPLER'S 3RD LAW

T = orbital period a = semi-major axis G = gravitational constant (G = 6.67 x 10⁻¹¹ m³ kg⁻¹s⁻²) M = mass of the Sun

Rearrange the equation to make M the subject:

Step 1	Step 2	Step 3		
Divide both sides by a ³	Multiply both sides by M	Divide both sides by $\left(\frac{T^2}{a^3}\right)$		
$\frac{\mathrm{T}^2}{a^3} = \frac{4\pi^2}{GM}$	$M\left(\frac{T^2}{a^3}\right) = \frac{4\pi^2}{G}$	$M = \frac{4\pi^2 a^3}{\mathrm{G}T^2}$		

Work out the value of M. Express your value to 3 significant figures, using scientific notation:

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Calculated value of M (kg)	1.99x10 ³⁰	1.98x10 ³⁰	1.99x10 ³⁰	1.98x10 ³⁰	1.98x10 ³⁰	2.01x10 ³⁰	1.99x10 ³⁰	2.01x10 ³⁰

The true mass of the Sun is $1.989 \times 10^{30} kg$.

All your values for M should be relatively similar and close to this value